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Quantifying the Robustness of Topological Slow Light
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The backscattering mean free path £, the average ballistic propagation length along a waveguide,
quantifies the resistance of slow light against unwanted imperfections in the critical dimensions of the

nanostructure. This figure of merit determines the crossover between acceptable slow-light transmission
affected by minimal scattering losses and a strong backscattering-induced destructive interference when the
waveguide length L exceeds £. Here, we calculate the backscattering mean free path for a topological
photonic waveguide for a specific and determined amount of disorder and, equally relevant, for a fixed
value of the group index n, which is the slowdown factor of the group velocity with respect to the speed of

light in vacuum. These two figures of merit, & and n,,

should be taken into account when quantifying the

robustness of topological and conventional (nontopological) slow-light transport at the nanoscale.
Otherwise, any claim on a better performance of topological guided light over a conventional one is

not justified.
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Slowing the speed of a light pulse down to human pace
(meters per second) requires complex interference effects
[1] which manifest as a flat dispersion relation v = v(k),
where k is the conserved wave vector and v(k) the
frequency. The group velocity v, of this slow light is
determined by the derivative of the flat band and the
slowdown factor is given by the group index as n, = c/v,,
where c is the speed of light in vacuum. n, is the figure of
merit for slow light and it determines the enhancement
factor for diverse applications such as optical nonlinearities
[2], optical switching [3], pulse delay [4], quantum optics
[5], optical storage [6], and optical gain [7]. A strategy to
bring slow light to the nanoscale exploits optical resonan-
ces built up by nanostructuring a dielectric or semicon-
ductor material with low absorption, such as silicon at
telecom wavelengths. Flat bands arise naturally in these
systems based on the periodic modulation of the refractive
index at optical or near infrared wavelengths [8,9] for
which the group index diverges as n, « (9v/9k)™" in the
ideal situation. However, in real devices there is a limitation
to the maximum n, achievable due to slight deviations of
the fabricated parameters compared to the designed values.
Even fluctuations in the nanometer range [10] give rise to
backscattering of the guided light, inducing a strong
interference [11], a photonic manifestation of Anderson
localization in low dimensions [12]. Imperfection limits
slow light in conventional photonic waveguides to maxi-
mum values around n,~ 100 for very short waveguides
with lengths L ~5 ym, much lower than the n, values
observed in atomic systems [ 1] but still sufﬁc;lently large to
explore weak light-matter interaction leading to cavity-
quantum electrodynamic phenomena [5]. In this Letter, we
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confirm that this limitation may be overcome by exploiting
photonic topological effects that purely arise from engi-
neering the lattice geometry.

Topological photonics has emerged very recently as a
competitive approach for robust light transport [13], some-
thing extremely appealing for technological applications. In
time-invariant topological insulators based on the quantum-
spin Hall effect [14] and the valley-Hall effect [15],
topology emanates from the breaking of particular spatial
symmetries. In such implementations, reciprocity imposes
the existence of the counterpropagating mode at —k. This
time-reversed edge state carries the opposite value of a
binary degree of freedom that plays the role of a pseudospin
[14]. In this case, the key open question is whether or not
backscattering is reduced and the answer will depend on
whether or not the existing structural disorder preserves the
pseudospin value. Recent ground breaking experiments
reported robustness in terms of a certain lack of structural
back reflection when precisely shaped local defects were
introduced in different topological waveguides [16].
However, this claimed robustness still needs to be
systematically quantified and compared with state-of-the
art conventional (nontopological) ones. Here, we engineer
slow light in a valley-Hall waveguide [15] to calculate its
backscattering length ¢ versus disorder and n, and we
compare the results to those of a conventional photonic
waveguide.

For our analysis, we focus on the parity-symmetry
breaking valley-Hall approach [15]. When applied to
photonic slabs, the topological edge states at an interface
between valley-Hall crystals of opposite K-valley pseudo-
spin lay below the light line of the slab and are decoupled
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FIG. 1. Slow light in topological waveguides. (a) Valley
topological waveguide (illustration) formed at the interface of
two valley crystals with different topological invariants as
proposed in Ref. [15]. (b) Dielectric function distribution (black
corresponds to silicon and gray to air). (c) Dispersion relation
v=u(k), and (d) calculated group index of the interface
topological edge state (inset displays the unit cell). For reference,
we design a conventional photonic waveguide obtained by
leaving a row of pillars from a triangular lattice (f) with a
dispersion relation and a group index plotted in (g) and (h),
respectively. The black point in the group index curves denotes
the frequency at which each waveguide has a n,~300. The
electromagnetic field intensities calculated at these frequencies
and for perfect waveguides are plotted in (e) and (i).

from the radiation continuum. In principle, these edge
states have no intrinsic out-of plane losses and only
fabrication imperfection can induce coupling to radiating
modes. Even in that situation, in-plane backscattering is
largely the dominant loss mechanism at large values of n,
[17] so it is enough to consider the system as two dimen-
sional to capture the physics of slow-light backscattering,
something not possible with other implementations of
topological photonics [18]. Here, we set up two-
dimensional simulations instead of the more computation-
ally expensive three-dimensional slab. Figure 1(a) displays
an illustration of a section of a fully two-dimensional
valley-Hall waveguide formed at the interface of two valley
crystals. The valley crystals are created with a triangular
lattice where the unit cell is formed by two circular silicon
pillars surrounded by air with different diameters d; = 0.4a
and d, = 0.2a, where a is the lattice constant with di-
electric constant eg; = 12 and ¢,, = 1, respectively. The
two-dimensional layout of the waveguide is plotted in
Fig. 1(b). For d; = d,, the system preserves the Cg,
symmetry and supports a symmetry-protected gapless band
structure between the first and second lowest energy bands
for transverse magnetic polarized light. For different pillar
diameters, the spatial inversion symmetry is broken thus

opening a band gap between these two bands [15] (see
Supplemental Material [19]). Figure 1(c) shows the calcu-
lated dispersion relation of the waveguide and in Fig. 1(d)
we plot the group index of the topological edge mode with
vanishing v, at the cutoff frequency v = 0.2955(c/a),
corresponding to v = 177 THz for a = 500 nm. For refer-
ence, we use a standard photonic crystal waveguide
obtained by leaving out a row of pillars in a triangular
lattice of silicon pillars surrounded by air with a pillar
diameter d = 0.4a and the same lattice unit as the topo-
logical waveguide, as shown in Fig. 1(f). The conventional
guided mode presents an ideally vanishing group velocity
when approaching the cutoff frequency of the waveguide at
v =0.3372(c/a), as shown in Figs. 1(g) and 1(h). Here,
the cutoff of the topological and conventional waveguide
lie on the X and I'" point, respectively. The ideal spatial
field-intensity distributions in both waveguides and at
frequencies corresponding to n, = 300 in both cases are
plotted in Figs. 1(e) and 1(i) for reference, which shows a
similar level of light confinement. Using silicon pillars
surrounded by air instead of the usual air holes in silicon
enables us to flatten the dispersion relation of both
topological and conventional guided modes successfully
without the need of local perturbations as in Ref. [22] or
progressive interfaces as done in Ref. [23]. The parameters
to obtain flat bands in the valley-Hall waveguide are
detailed in the Supplemental Material [19].

The backscattering length & is the average ballistic
propagation distance along the waveguide in the absence
of any other major loss mechanism [17]. A slow-light
waveguide becomes virtually useless when L > ¢.
Interestingly, & is linked to the density of optical states
of the waveguide, p, at least for a weak perturbation
[17,24], as & «x p~2 = (Ov/Ok)?*. Intuitively, a larger den-
sity of optical states induces a larger probability of
scattering, thus reducing the value of & As n,
(Ou/Ok)™" = p, both the group index and the backscatter-
ing length are intrinsically linked to each other via the p, at
least in conventional photonic crystal waveguides [25].
Despite substantial theoretical work on £ in nontopological
electronic [26-28] and photonic transport [17,25,29], this
parameter has only been explored recently in topological
waveguides [30] although ignoring n,. Besides this, only
intrinsic out-of plane losses of topological guided modes in
nondisordered photonic crystal slabs have been analyzed
[31]. We calculate & in perturbed topological and conven-
tional photonic crystal waveguides as

T (In[I()]), (1)

where [ is the finite-element solution of the electromagnetic
field intensity emitted by a dipole at frequency v, x is the
distance from the dipole position along the waveguide and
the brackets indicate the statistical ensemble average over
different configurations of positional disorder. In Eq. (1),
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the field intensity / is normalized by its (maximum) value at
the source position which is the same in each calculation.
Our simulation domain has a length L = 200a in the x
direction, eleven unit cells on each side of the waveguide in
the y direction and it is all surrounded by perfectly matched
layers to mimic an open system. In some cases, when the
calculated value of & exceeds L = 200a, we extend the
simulation domain to L = 500a which also allowed us to
double-check some of the obtained results. To simulate the
effect of fabrication imperfection, we randomize the posi-
tion of the pillars around their ideal value according to a
normal distribution which standard deviation ¢ is our
measure of disorder (more details in the Supplemental
Material [19]). It is important to remark the fact that the
backscattering length is a universal parameter in one-
dimensional transport [32,33] and any mesoscopic-
transport observable in these systems depends only on ¢,
regardless of the microscopic details of the medium
considered, i.e., regardless of it being silicon pillars
surrounded by air or air inclusions in silicon.

The electromagnetic field intensity excited by a dipole
source oscillating at the leftmost edge of the waveguide is
shown in Fig. 2. The oscillation frequency is chosen such
that both the topological (left) and the conventional (right)
waveguide would enable slow light transmission with
n, =300 in the absence of any imperfection. The figure
shows calculations corresponding to varying configura-
tions of positional disorder for which the positions of the
pillars are randomized with a fixed ¢ = 0.001a. As shown
in Fig. 2(a), the excited Bloch modes in the topological
waveguide are just slightly perturbed, which reveals a
rather weak backscattering for this large group index

value. However, strong backscattering interference pre-
vents light transport in the conventional waveguide, as
revealed by the different examples plotted in Fig. 2(b). As
£ is a statistical parameter, this requires an ensemble-
average calculation of many (ideally all) different disorder
configurations. In numerical experiments, as the one
performed here, £ is easily obtained by computing the
position-dependent field excited by the dipole source in
the conditions described above for several structural
configurations with the same nominal amount and type
of disorder. Figures 2(c) and 2(d) show the intensity
pattern after ensemble averaging the electromagnetic field
excited by this emitter over twenty different realizations,
the envelope of which decays exponentially from the
position of the source with a sufficiently well-averaged
slope, as plotted along the waveguide axis in Figs. 2(e)
and 2(f) for n, = 300.

The calculated ¢ vs n, is plotted in Fig. 3(a) for the
topological (solid-red circles) and conventional waveguide
(open-black circles). & is calculated for a fixed amount of
positional disorder ¢ = 0.001a, which corresponds to
fluctuations of ~0.5 nm for @ = 500 nm. This is a realistic
measure of the residual imperfection resulting from a state-
of-the art fabrication process [10,34]. At such a disorder
level, the topological waveguide is more robust than
standard conventional slow-light waveguides when the full
phase is randomized, thus mimicking the effect of imper-
fection in real systems. Topological waveguides suffer
much less backscattering than conventional ones [see
Fig. 3(a)] with a & comparable to the waveguide length for
large group index values. Even at large values of the
group index, n, =~ 1000, the interface edge mode of the
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FIG. 2. Backscattering in topological slow-light waveguides. (a) Normalized electromagnetic-field intensity excited by a dipole
emitter positioned on the left side of a disordered valley-Hall waveguide at a frequency v = 0.2955(c/a), where a is the lattice constant
and c is the speed of light in vacuum. Three different configurations of randomized positions of the pillars are plotted with a standard
deviation of ¢ = 0.001a. (b) Calculations for a conventional photonic waveguide where the dipole emitter is excited at a frequency
v =0.3372(c/a). In (a) and (b), the dipole emission frequency corresponds to a group index of n, = 300. (c) and (d) show the
ensemble-averaged electromagnetic field intensity excited by the dipole source at the same frequencies of (a) and (b). For this
calculation, over twenty configurations of positional disorder of the pillars with ¢ = 0.001a were averaged. (e) and (f) illustrate the
calculated ensemble-averaged electromagnetic field-intensity profile along the topological and conventional waveguide axis,
respectively. The localization length is extracted from the inverse of the exponential decay slope.
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Backscattering length versus group index in topological waveguides. (a) £ vs n, calculated in a valley (solid-red circles) and a

conventional photonic crystal waveguide (open-black circles) for a fixed amount of disorder in the position of the pillars (¢ = 0.001a).
The shaded area indicates a waveguide of length L = 100a and the lines are guides to the eye. (b) and (c) Distributions of the cutoff
frequency calculated in a topological and a conventional waveguide for 10* different configurations of positional disorder with
o = 0.001a. The calculated frequency is formalized to the frequency of the unperturbed structures vy. (d) Standard deviation of the
distribution of the frequency shifts +Av as calculated in (b) and (c) vs the strength of the perturbation. From the relation ¢, = ¢o, we
quantify the effective impact of disorder in the waveguides with the parameter ¢.

topological waveguide is slightly perturbed when compared
to the strong backscattering suffered by the conventional
one, as shown in the different configurations plotted in
Fig. 2(a). Here, it is relevant to discard mechanisms that
could affect in a different manner both systems and yield
the data plotted in Fig. 3(a), rather than the topological
protection. Small geometrical perturbations in the pillars of
the waveguides result in positive or negative energy shifts
+Av of the dispersion relation of a guided mode [35],
where Av < 1. Here, the v is the unperturbed guided-
mode cutoff frequency, i.e., the frequency for which the
group index is maximum. To quantify this effect, we
calculate the cutoff frequency of the guided mode in both
systems after perturbing the waveguides by introducing a
fixed positional disorder ¢ = 0.001a. Figures 3(b) and 3(c)
plot the distributions of this cutoff frequency, v, for 10*
different configurations normalized by r,. For the same
amount of positional disorder the impact, in terms of the
standard deviation of the distribution o,, is stronger on the
topological edge state than on the conventional guided
mode, as o, is clearly narrower for the former. We evaluate
the dependence of 6, = ¢ on positional disorder strength
for a wide range of values in both waveguides, where the
parameter ¢b quantifies the effective impact of disorder in
both cases. As plotted in Fig. 3(d), the topological wave-
guide suffers a larger effective impact of disorder than the
conventional waveguide, i.e., disorder shifts the energy of
its unperturbed cutoff frequency in a more pronounced way,
which underlines even more the potential of the topological

protection observed here at very large values of n,, the main
result of this Letter.

The calculated ¢ vs disorder is plotted in Fig. 4 where
the value of the group index is kept fixed at n, = 100 (a)
and n, = 500 (b). ¢ has a different dependence on the
disorder strength ¢ on both waveguides. This is clear in
Figs. 4(a) and 4(b), where the slope of this dependence is
markedly different for the topological and conventional
waveguides and becomes even more different when the
value of n, increases. To quantify this dependence, we fit
the calculated values as & ~ 6™”. We plot the dependence
of the exponent f in Fig. 4(c) on n,. This dependence has
been studied in terms of the Lyapunov exponent y, which
under certain hypotheses fulfilled here quantifies the
exponential decay of the eigenfunctions in a disordered
system [36]. y is the inverse of &, the localization length.
The dependence of y on the amount of disorder y ~ ¢” has
been analyzed in perturbed periodic photonic structures
[37] where a value of f ~ 2 is obtained in the bulk of the
dispersion relation. Here, we recover this dependence in
both waveguides for low values of n,. Near the cutoff
frequency, the parameter f is expected to converge to
2/3 as observed in Refs. [37,38]. Here, f displays a very
different behavior in both waveguides close to the cutoff
frequency. While f# ~ 2/3 for the conventional waveguide
[37], p ~3/2 for the topological one. We also extract a
critical level of disorder o,., above which light in the
conventional waveguide backscatters less than the topo-
logical one. o, is obtained at the crossing between the
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FIG. 4. Backscattering length versus disorder in topological
waveguides. Calculated backscattering length vs positional pillar
disorder for a fixed group index value n, = 100 (a) and n, = 500
(b), in solid-red and open-black circles for the topological and the
conventional waveguide, respectively. The dependence of the
backscattering length vs the strength of disorder is fitted as
&~cP. Above a critical level of disorder o, the conventional
waveguide sufferers less backscattering than the topological one.
o, is estimated from the crossing of the fits. (c) The fitting
parameter /3 plotted for a wide range of values of the group index.

fits of &£ for both waveguides. Above o, the probability of
a pseudospin flip upon scattering of the Bloch mode
increases, leading to a decreasing £.

In conclusion, one of the key elements to quantify the
robustness of photonic waveguides is to randomize the
full phase to mimic real imperfection due to the fabrica-
tion process, the real limitation in slow-light transport.
Calculating the backscattering length linked to the group
index enables us to quantify the robustness of a topologi-
cal edge state, as these two parameters are related to
each other through the density of optical states. Current
proposals of topological photonic phases as the valley-
Hall effect are quantitatively, by almost five times, more
robust than standard conventional waveguides with small
disorder levels, although this protection is lost at higher
imperfection amount. The analysis carried out here is
based on a particular system of silicon pillars surrounded
by air but the approach is completely generic and can be
implemented for any other single-mode waveguide with
arbitrary design. The large group index values calculated
here, n, ~ 1000, provide a promising platform for highly
efficient strong light-matter interaction [39] where photon
transmission over hundreds of microns is relatively
backscattering free. Future work to evaluate topological
invariants [40] of different topological implementations
will provide additional insight into the relationship
between the backscattering length evolution with disorder
level and the protection granted by topology.
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