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Nanostructured materials offer the possibility to manipulate 
the mechanical vibrations of a solid over a specified spectral 
bandwidth. This in turn enables the control of light–matter 

interactions in the visible and near-infrared regimes for optome-
chanical applications ranging from high-resolution accelerometers1 
to mass and force sensors2,3, in addition to providing fundamental 
insights into phenomena such as quantum ground-state cooling4,5. 
By periodically distributing the mass within a system, it is possible 
to engineer its mechanical modes6,7 and open frequency windows 
over which the destructive interference of scattered waves forbids 
any phonon propagation8,9. This approach enables engineering of 
the thermal conductance of the structure10 and allows for the rout-
ing of phonons at the mesoscale11,12. Although full-gap gigahertz 
phononic crystals are widely used in optomechanical systems to 
create phononic shields13, waveguides14,15 and cavities16,17, clear 
and direct experimental evidence of a complete omnidirectional 
phononic bandgap at hypersonic (GHz) frequencies is still lack-
ing. Existing experimental work is generally limited to megahertz 
frequencies up to the 1 GHz band, using piezoelectric materials to 
drive the system18–22, requiring varying interdigitated electrodes to 
probe different frequencies and propagation directions. In the giga-
hertz regime, only partial and narrow mechanical bandgaps (with 
up to 8% gap-to-midgap ratio) have been shown using assembled 
platforms such as colloidal crystals23 or two-dimensional phononic 
crystal membranes24. Furthermore, the control and guiding of elas-
tic waves at gigahertz frequencies has been difficult to achieve or 
measure, relying on complex optomechanical systems14,15 or nonlin-
ear stimulated phenomena25.

Here we report direct experimental evidence of a wide full pho-
nonic gap with a central frequency at 8.4 GHz and a spectral width 
of 5.3 GHz (a gap-to-midgap ratio of 64%) in a free-standing pat-
terned silicon membrane phononic crystal. Additionally, we create a 
line-defect waveguide with the same geometry in which we directly 
measure two guided modes at 5.7 GHz and 7.1 GHz within the 
bandgap at room temperature. We demonstrate the passive spectral  

tunability of the mechanical gap as a function of the geometric 
parameters of the crystal, with a spectral shift spanning the range 
from approximately 4 GHz to 11.5 GHz, which subsequently also 
enables spectral tunability of the guided modes.

Shamrock phononic crystal design
All the structures measured here are fabricated on a silicon-on- 
insulator (SOI) platform, which readily enables integration with 
electronic and photonic circuits. Figure 1a shows a scanning elec-
tron micrograph (SEM) of the fabricated pattern composed of a  
triangular array of ‘shamrocks’26,27, formed by three tangential 
circles with nominal parameters of thickness t = 220 nm, period 
a = 330 nm, and radius r = 0.22a, as detailed in the inset of Fig. 1a 
and Supplementary Fig. 1. We calculate the phononic dispersion 
relation of the structure by solving the full three-dimensional elas-
tic wave equation using finite-element simulations performed with 
COMSOL Multiphysics28.

Figure 1b plots the symmetric (blue) and asymmetric (red) 
acoustic modes with respect to the mid-plane of the silicon slab, 
calculated over the entire first Brillouin zone of the crystal. We 
use the geometrical parameters extracted from SEM images to 
more accurately simulate the real shape of the fabricated crystal 
(Supplementary Fig. 4). We also take into account the anisotropy 
of the silicon stiffness tensor and its particular orientation with 
respect to the fabricated samples, as detailed in Fig. 1a. Owing to 
this mechanical anisotropy, the irreducible Brillouin zone is deter-
mined by the first quarter of the hexagon highlighted on the bot-
tom part of Fig. 1b. A full mechanical gap opens between the sixth 
and seventh bands, from 6.7 GHz up to 11.4 GHz (gap-to-midgap 
ratio of 52%), which results in the complete depletion of the pho-
non density of states over this frequency range, as shown in Fig. 1c.  
The particular shape of the shamrock crystal, which comprises 
large masses connected by small necks, enables a distribution of the 
mass within the unit cell that results in this broad mechanical gap. 
A direct link exists between the spectral width of the gap and the 
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narrow necks (shorter distance between shamrocks): a larger radius 
leads to narrower connected neck regions, which subsequently  
widens the gap29.

Experimental reconstruction of the mechanical dispersion
We use Brillouin light scattering spectroscopy30,31 to reconstruct 
the mechanical dispersion relation of the system. For simplicity, we 
probe the band structure along the ΓKMΓ path, highlighted at the 
bottom of Fig. 1b, as the edges of the gap do not change in frequency 
with respect to the irreducible Brillouin zone (Supplementary 
Section 2). When incident light with frequency νi and wavevec-
tor ki reaches the surface of the sample with a certain angle, θ, as 
illustrated in Fig. 2a, part of it is linearly scattered while another 
small part is non-linearly scattered in all directions by thermally 
activated acoustic phonons. This scattering process occurs either 
by the photoelastic (PE)32 or the moving-boundary33 mechanism. 
The former is a volumetric effect caused by the acoustic modula-
tion of the dielectric constant ϵ inside the material, while the latter 
is a surface effect induced by the movement of phonons that creates 
corrugation at the interface.

The interplay between these two effects can result in the enhance-
ment34 or the cancellation35 of the scattering process. Given the high 
refractive-index contrast between silicon and the surrounding air, 
and the small volume of interaction, determined by the direction 
of the incident beam and the thickness of the suspended structure, 
the scattering process here is dominated by the moving-boundary 
mechanism. Our experiment collects the backscattered signal, ks, 
in Fig. 2a. For this configuration, the phase-matching condition for 
the mechanical wavevector q∥, which lies parallel to the surface, is 
determined by

q∥ = 2ki sin θ =

4π

λi
sin θ, (1)

where ki = 2π/λi. Therefore, it is possible to probe different mechani-
cal wavevectors by changing the angle of incidence of light θ, illus-
trated in Fig. 2a, and subsequently map the dispersion relation of 
the acoustic phonons. All measurements were taken by focusing 
a green laser (λi = 532 nm) that is p-polarized with respect to the 

sagittal plane formed by the angle θ (Supplementary Fig. 9). The 
scattered light that was analysed is also the p-polarized component. 
Although in-plane and out-of-plane elastic waves in bulk materi-
als and membranes can be selectively detected using light polar-
ization36, elastic waves in phononic crystals are generally mixed. 
Therefore, we do not obtain different information by considering 
different polarizations of incident and analysed light.

Figure 2b plots the mechanical spectrum measured with inci-
dent angle θ = 32. 5∘, which corresponds to the high-symmetry 
point K in reciprocal space. The central peak highlighted in green 
corresponds to the elastic (Rayleigh) scattered signal. Positive 
and negative frequencies correspond with anti-Stokes and Stokes 
contributions respectively, which are equally likely in a stochas-
tic process such as spontaneous Brillouin scattering32,37. All the 
peaks observed in the spectrum correspond to vibrational modes 
of the system and their amplitudes depend on the scattering effi-
ciency of each mode with the incident laser light38, which is pro-
portional to the displacement of the boundaries, as detailed in 
Supplementary Section 4. We obtain the phonon frequencies by 
fitting each of the observed peaks to Lorentzian line shapes and 
extracting the mean value between the resonant frequencies of the 
Stokes and anti-Stokes components. Figure 2c plots the mechani-
cal dispersion relation along the ΓKMΓ path. The intensity colour 
scale represents the normalized coupling coefficients for the  
moving-boundary perturbation.

The sidewalls of our structures are angled at approximately 4∘ 
relative to vertical, which is taken into account in our band struc-
ture calculation, as shown in the inset of Fig. 2c. This breaks the 
up–down symmetry and the mechanical modes of the real struc-
ture therefore cannot be classified by their symmetry with respect 
to the mid-plane of the slab as done previously in Fig. 1b. For this 
reason, all bands in Fig. 2c are indicated with the same colour and 
only change in intensity to indicate the scattering efficiency of 
each mode and wavevector. We observe that this small correction 
to the vertical profile causes a displacement of about 1 GHz in the 
bands below the band-gap, which becomes evident upon comparing  
Figs. 2c and Fig. 1c. Additionally, the gap-to-midgap ratio increases 
from 52% in Fig. 1b,c to 64% in Fig. 2c. The black dots in Fig. 2c 
are the measured frequencies of the peaks as the incident angle is 
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Fig. 1 | Shamrock phononic insulator. a, SEm (tilted-top view) of the fabricated structure on an SOI substrate with a thickness of t = 220 nm. Inset: 
schematic illustration of the geometrical parameters of the unit cell (highlighted in red) with lattice constant a = 330 nm, hole radius r = 0.22a, and the 
distance between the centre of the shamrock and the centre of each circle f = 2r/

√

3. b, Simulated three-dimensional phononic dispersion relation of the 
crystal over the first Brillouin zone. Blue and red curves indicate the symmetric and asymmetric modes with respect to the middle plane of the silicon slab at 
t/2. c, Calculated phononic density of states (DOS) of the structure. The light-blue region highlights the full mechanical gap spanning 6.7 GHz to 11.4 GHz.

NATuRE NANOTECHNOlOGy | VOL 17 | SEPTEmBER 2022 | 947–951 | www.nature.com/naturenanotechnology948

http://www.nature.com/naturenanotechnology


ArticlesNature NaNotechNology

varied. The vertical dashed line indicates the position of frequencies 
obtained for the spectrum shown in Fig. 2b.

To resolve the full mechanical dispersion relation, we map the 
highest-symmetry directions of the Brillouin zone: ΓK, KM and 
ΓM. The ΓK path is measured by varying the angle of incidence 
θ from zero to 32.5∘, as depicted in Fig. 2d where the green arrow 
represents the incident laser. Here, the value of the maximum angle 
θ is calculated from the relation q∥ = |ΓK| = 4π

3a =
4π
λi sin θ. To map 

the ΓM direction, we rotate the sample 30∘ to align the ΓM path with 
the horizontal direction as indicated in Fig. 2f and, from that posi-
tion, we rotate the angle θ. Here, the maximum angle is indicated by 
q∥ = |ΓM| = 2π√

3a =
4π
λi sin θ. Mapping the KM path requires the 

simultaneous variation of two specific angles α and θ to measure the 
intersecting point of the blue segment and the horizontal direction, 
as depicted in Fig. 2e.

The calculated and measured frequencies are in good agree-
ment and we attribute the residual frequency mismatch to fabri-
cation fluctuations and the non-vertical sidewalls. Some modes in 
Fig. 2c are undetectable in the experiment as their displacement 
is predominantly in-plane and therefore do not scatter enough 
light to be detected. The light-blue region in Fig. 2c highlights the 
mechanical gap of this particular crystal. Within this frequency 
window, no elastic waves were measured for any angle of incidence 
in any high-symmetry direction, covering a broad spectral range of 
5.3 GHz centred at 8.4 GHz, which corresponds to a gap-to-midgap 
ratio of 64%. We also explore the spectral tunability of the gap as 
a function of the geometry by varying the lattice constant a. The 
band-gap evolution calculated from finite-element simulations and 

measured spectra for crystals with periods of 220 nm, 330 nm and 
440 nm can be found in Supplementary Section 5. Supplementary 
Figure 11 also includes the experimental band reconstruction for 
crystals with a = 220 nm and a = 440 nm. We confirm the spectral 
tunability of the gap from 4 GHz to 11.5 GHz. Subsequently, the tun-
ing of phononic guided modes is also possible.

Mapping of waveguide guided modes
Finally, we demonstrate the possibility to create phononic wave-
guides with the phononic insulator presented here. For this, we 
design and fabricate a waveguide surrounded on both sides by 
shamrock phononic crystals with inverted symmetry as shown 
in the SEM image in Fig. 3a. This structure has a periodicity of 
a = 440 nm, a waveguide width of w = 184 nm, and the same fill frac-
tion and thickness as the previous structures (r/a = 0.22, t = 220 nm). 
The mirror symmetry of the crystal with respect to the defect line 
is crucial for proper band engineering of the guided elastic waves. 
The two panels in Fig. 3b show the Brillouin spectra measured on 
the waveguide (top) and on the surrounding phononic crystal (bot-
tom), as specified in the insets, taken at the same incident angle of 
23.8∘. The blue region indicates the phononic band-gap of the struc-
ture. The two peaks measured within this gap in the top panel of 
Fig. 3b at 5.7 GHz and 7.1 GHz are clear experimental evidence of 
mechanical vibrations confined in the phononic waveguide.

In order to detect these confined modes, it is necessary to focus 
the light on the waveguide with a long-working distance micro-
scope objective to reduce the spot size of the incident light down 
to 1.2 μm. In doing so, we reduce the contribution of the Brillouin 
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scattered signal from the crystal while increasing the contribution 
from the waveguide. For the measurements of these waveguide 
structures, the background is higher due to a greater collection of 
reflected and linearly scattered light relative to that of the 3 cm focal 
length lens used in Fig. 2. Figure 3c plots the dispersion relation of 
the waveguide accounting for the 4∘ correction of the vertical side-
walls. As in Fig. 2c, the colour intensity of the bands corresponds to 
the normalized coupling coefficient for the moving-boundary per-
turbation. The fully shaded regions above and below the gap cor-
respond to the bulk crystal modes and define the band-gap edges 
of the structure.

The calculated dispersion relation exhibits nine guided modes 
but only two (which are indicated with their associated mode pro-
files) are detected in our experiment. We attribute this to be because 
of the elastic displacement of these modes, which is predominantly 
out-of-the plane, while the other calculated guided modes dis-
place the structure primarily in-plane (Supplementary Section 4). 
The horizontal dashed lines highlight the edges of the band-gap 
measured in Fig. 3b and the black dots correspond to the frequen-
cies of the guided modes measured at different angles. The angle 
θ = 23.8∘ corresponds to a normalized wavevector of 1.34 (replacing 
q∥ = nπ/a in equation (1) and solving n), or kx/(π/a) = 0.66 over the 
first periodic zone of the waveguide. The two black dots (1 and 2)  
coincide with the measured frequencies and wavevector in Fig. 3b.  
We assume that the measured peak around 7 GHz corresponds 
with the darker flat mode around 7.7 GHz and not with the lighter 
curve that it is spectrally closer to. There is a difference of approxi-
mately 700 MHz for this band while the other peaks agree very 
closely with the calculated band. The detection of these two modes 

is a clear fingerprint of the existence of guided modes along the  
Shamrock waveguide.

Conclusions
In summary, we provide direct experimental evidence of the 
complete absence of mechanical vibrations at room temperature 
within a full phononic band-gap that is 5.3 GHz wide with a cen-
tral frequency of 8.4 GHz. This measured mechanical gap has a 
gap-to-midgap ratio of 64% and is an order of magnitude wider 
than previous experimental demonstrations reported in the lit-
erature. The geometric pattern we incorporate gives rise to these 
wide mechanical gaps by distributing the mass within the unit cell, 
forming mass clusters connected by narrow necks that result in 
the destructive interference of phonon waves. We achieve control 
over the width and frequency of the gap by fine-tuning of the geo-
metrical parameters of the structure, enabling spectral tunability 
of the gap from 4 GHz to 11.5 GHz. This tunability is extended to 
the guided modes of a line-defect waveguide, enabling engineering 
of the frequency and number of confined modes within the struc-
ture. This is a clear demonstration of mechanical guided modes at 
hypersonic frequencies in the gigahertz regime using line-defect 
waveguides, measured at room temperature without any external 
excitation in a SOI platform that enables facile integration into exist-
ing photonic systems. This hypersonic insulator is also a photonic 
insulator for transverse-electric modes at telecom wavelengths26,27 
and can be used to simultaneously engineer phononic and pho-
tonic transport enhancing the optomechanical coupling between 
terahertz photons and gigahertz phonons. This makes the crystal 
an ideal transducer in photonic circuits with potential applications 
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in high-speed signal processing39. Furthermore, this platform can 
be used in applications and physical processes in which a wide 
mechanical band-gap is required to isolate the system from ther-
mal damping, such as in quantum cavity optomechanics or organic  
molecular systems40.
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